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LETTER TO THE EDITOR

Tsallis statistics and fully developed turbulence

T Arimitsu† and N Arimitsu‡
† Institute of Physics, University of Tsukuba, Ibaraki 305-8571, Japan
‡ Department of Computer Engineering, Yokohama National University, Kanagawa 240-8501,
Japan

Received 1 March 2000

Abstract. An analysis of fully developed turbulence is developed based on the assumption that
the underlying statistics of the system is that of the Tsallis ensemble. The multifractal spectrum
fT(α) corresponding to the Tsallis-type distribution function is determined self-consistently in the
sense that all parameters can be obtained through the observed value of the intermittency exponent.
It is shown that the scaling exponents ζm of the velocity structure function derived with the help
of the multifractal spectrum fit very well with experimental data. It is revealed that the asymptotic
expression of ζm for m � 1 has a log term. The present self-consistent approach narrowed down
the value of intermittency exponent µ for the fully developed turbulence to µ = 0.235 ± 0.015.

In a previous paper [1], we showed that the Tsallis index q [2, 3]† corresponding to the p-
model [5] can be effectively determined by observed values of the intermittency exponent
µ with the help of the scaling relation (14) below [6]. We proposed in [1] a Tsallis-type
distribution function for the probability density function of the local dissipation, and revealed
that the proposed distribution function with the Tsallis index q determined by the observed
value µ fits very well with the binomial distribution function of the p-model.

In this letter, we develop the program in [1] much further with the assumption that the
underlying statistics of the system of fully developed turbulence is that of the Tsallis ensemble.
The ensemble is a generalized one with a non-extensive character (see (11) below) including the
Boltzmann–Gibbs (extensive) ensemble as a special case. This may give us an interpretation
of the question of why the multifractal analysis (p-model) works, based upon the statistical
mechanical background in the sense that an appropriate probability density function of the local
dissipation is derived by taking the extremal of the Tsallis entropy [2–4] under two constraints,
i.e. the normalization of probability and the quantity related to the intermittency exponent
being constant. Note that most of the theories produced up to now have been constructed
on extensive statistics, and others do not have a statistical mechanical basis. We expect that
the present approach will also provide us with a plausible understanding of the somewhat
unfamiliar Tsallis statistics itself as well as of an old but still new difficult problem related to
the intermittency in fully developed turbulence.

We will determine the multifractal spectrum fT(α) corresponding to the Tsallis-type
distribution function self-consistently in the sense that all parameters can be calculated by
using the observed value of the intermittency exponent. There is no other fitting parameter.
With the multifractal spectrum, we will derive the scaling exponents ζm of velocity structure
function, and compare them with experimental data and with the curves given by other theories,

† For an updated bibliography on the subject see [4].
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Figure 1. Scaling exponents ζm of velocity structure functions. The present result for µ = 0.235
is given by the solid curve. The solid triangles are the experimental results by Anselmet et al [11];
the squares and the circles are from [5]. K41 is given by the dotted line, the β-model (Dβ = 2.8)
by the dashed line, the p-model (µ = 0.235) by the dotted–dashed curve, the log-Poisson model by
the short-dashed curve and the log-normal model (µ = 0.235) by the double-dotted–dashed curve.

i.e. K41, log normal, β-model, p-model and log Poisson. We will show that the present result
fits very well with all the experimental data (see figure 1). We also find that there is a log term
in ζm for m � 1.

The study of fully developed turbulence was started by Kolmogorov [7] by dimensional
analysis with the assumption that any physical mean values are determined by the kinetic
viscosity, ν = η/ρ, and the energy input (output) rate, ε. Here, ρ and η represent, respectively,
mass density and static viscosity. In the energy input range, since ν may not take part, the size
�0 of the grid which produces turbulence should be given by �0 = u3

0/ε, with the velocity u0

of fluid at the grid. On the other hand, in the dissipation range, as ν plays the leading part, the
typical size �d of the range is determined by �d = (ν3/ε)1/4. Note that the Reynolds number
Re of the system is, then, given by Re = u0�0/ν = (�0/�d)

4/3.
For the high-Re limit Re � 1, there exists a wide inertial range, which is characterized

by the size �n = �0δn, δn = 1/2n (n = 0, 1, 2, . . .) of eddies satisfying �0 � �n � �d , and the
Navier–Stokes equation, ∂ �u/∂t + (�u · �∇)�u = −�∇(p/ρ) + ν∇2 �u, is invariant under the scale
transformation [8]: �r ′ = λ�r , �u′ = λα/3 �u, t ′ = λ1−α/3t , (p/ρ)′ = λ2α/3(p/ρ). The rate of
transfer of energy εr per unit mass averaged over a domain r ∼ �n, called the local dissipation
of turbulent kinetic energy, behaves as εr ∼ δu3

r /r ∝ rα−1. The total dissipation Er occurring
in a box of size r will be

Er ∼ εrr
d ∝ rα−1+d (1)

where d represents the dimension of physical space.
We will restrict ourselves in this paper to the analysis of the measured time series of the

streamwise velocity component of an isotropic turbulence behind grids. Then, the dimension
of physical space d will be unity [8]. Within the Taylor frozen flow hypothesis, our main
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interest is the scaling exponents ζm of the mth-order velocity correlation of the difference, i.e.

〈(δu(r))m〉 ∝ rζm (2)

with δu(r) = |u(x + r)−u(x)| where u is a component of the velocity field �u. The expectation
〈· · ·〉 is taken by an appropriate probability distribution function, which we will analyse in this
paper.

In the inertial range it is assumed that physical quantities are determined by ε and r ∼ �n.
Then, within dimensional analysis we see that ζm = m/3 in this range. ζ2 gives the Kolmogorov
spectrum [7].

Now, let us assume that the dissipation of turbulent energy is a multifractal. Dividing the
d-dimensional space into boxes of size r , and summing powers of different order α of Er over
all boxes, we expect these sums to scale with the size of boxes r according to [8]∑

α

Eq̄
r ∼ r(q̄−1)Dq̄ (3)

where Dq̄ is called the generalized dimension (the Renyi dimension). Substituting (1) into (3),
and replacing the sum by an integration†:

∑
α · · · = ∫

dα ρ(α)r−fd (α) · · · , we can extract the
formulae [8]

fd(α) = αq̄ + τd(q̄) (4)

with the mass exponent

τd(q̄) = (1 − q̄)Dq̄ + (d − 1)q̄ (5)

and

α = − dτd(q̄)/dq̄ (6)

satisfied in the limit of small r by making use of the steepest-descent method. These equations
determine fd(α) and α when Dq̄ is known. Note that q̄ is given by

q̄ = dfd(α)/dα. (7)

Equation (4) with (6) or with (7) constitutes the Legendre transformations. We use in this
paper the notation q̄ to avoid any confusion with the Tsallis index q.

The probability density function Pε(εr) of the local dissipation of turbulent kinetic energy
is given by [8]

Pε(εr) d(εr/ε) ∝
(

r

�0

)D0−fd (α) ε

εr ln(r/�0)
d(εr/ε)

= δD0−fd (α)
n dα

= exp{[D0 − fd(α)] ln δn} dα. (8)

It was shown that the intermittency exponent µ is determined by [8]

µ = 1 − D2. (9)

Tsallis [2–4] introduced the non-extensive entropy

Sq =
( ∑

i

p
q

i − 1

)/
(1 − q) (10)

to produce a generalized Boltzmann–Gibbs statistics. The non-extensivity is shown by the
pseudo-additivity property [3]

Sq(A + B) = Sq(A) + Sq(B) + (1 − q)Sq(A)Sq(B) (11)

† ρ(α)r−fd (α) is the weight from the number of boxes for which α takes on values between α and α + dα. fd(α) is
the multifractal spectrum of the set with the scaling exponent lying between these values.
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A and B being probabilistically independent.
By taking the extremal of (10) with the constraint indicating the conservation of probability,∑

i pi = 1, and with that fixing the q-averaged internal energy [9], Uq = ∑
i p

q

i Ei/
∑

j p
q

j ,
one obtains the general form of the probability distribution function of the Tsallis ensemble in
the form

pi =
[

1 − (1 − q)β(Ei − Uq)∑
j p

q

j

]1/(1−q)/
Z̄q (12)

with the partition function

Z̄q =
∑
i

[
1 − (1 − q)β(Ei − Uq)∑

j p
q

j

]1/(1−q)

. (13)

Note that Tsallis statistics reduces to Boltzmann–Gibbs statistics taking the limit q → 1. Here,
we are using the units where the Boltzmann constant is unity.

It was shown [6] that the value q of the parameter appearing in Tsallis statistics is related
to the extremes αmax and αmin of the multifractal spectrum fd(α) by

1/(1 − q) = 1/αmin − 1/αmax. (14)

Now, we assume that the probability density function can be given by the Tsallis-type
distribution function of the form

PT(α) dα = Z−1
T

[
1 −

(
1 − q

n

)
(α − α0)

2 ln δ−1
n

2X

]n/(1−q)

dα (15)

with the obvious partition function ZT. The parameters α0, X and Tsallis index q should be
determined by the intermittency exponent µ. With the help of (8), we see that the multifractal
spectrum corresponding to the distribution function is given by

fT(α) = D0 +
1

1 − q
log2

[
1 −

(
1 − q

n

)
(α − α0)

2 ln δ−1
n

2X

]
. (16)

Note that the reason for the subscript in α0 is because it is defined by dfT(α)/dα|α=α0 = 0,
indicating that α0 = α(q̄ = 0) (see (7)).

The relation between q̄ and α is given by (7), which is solved to give us

αq̄ − α0 = 1 − √
D

q̄(1 − q) ln 2
(17)

with √
D =

√
1 + 2q̄2(1 − q)X ln 2. (18)

Then, we have from (5) for d = 1

τ(q̄) = (1 − q̄)Dq̄ = fT(αq̄) − αq̄ q̄

= 1 − αq̄ q̄ + δτ(q̄) (19)

with

δτ(q̄) = 1

1 − q
log2

[
1 − (1 − √

D)2

2q̄2(1 − q)X ln 2

]
(20)

where we put fT(α0) = D0 = 1 for the fractal dimension of the multifractal set. In the case
q �= 1, we have

δτ(q̄) → −1

1 − q

[
log2 |q̄| + log2

√
X(1 − q) ln 2/2 + O(1/q̄)

]
(21)
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Table 1. Parameters q, α0 and X for several values of µ.

µ q α0 X

a 0.175 0.246 1.10 0.205
b 0.200 0.270 1.12 0.238
c 0.225 0.272 1.13 0.273
d 0.235 0.370 1.14 0.280
e 0.250 0.446 1.14 0.294
f 0.275 0.447 1.16 0.329
g 0.300 0.447 1.18 0.365

for |q̄| → ∞. It should be noted that a log term appears in τ(q̄) for large |q̄|†. αmax = α(q̄ =
−∞) and αmin = α(q̄ = +∞) are given by

αmax − α0 = α0 − αmin =
√

2X/((1 − q) ln 2). (22)

In order to determine three parameters, we need three independent equations. Putting
q̄ = 1 in (19), i.e.

τ(1) = 0 (23)

we have the first equation which relates X, q and α0. Substituting q̄ = 2 into (19) and using
it for (9), i.e.

µ = 1 + τ(2) (24)

we have the second formula, which gives the intermittency exponent µ in terms of X, q and
α0. Substituting the solutions

α− = α0 −
√

2bX α+ = α0 +
√

2bX (25)

of fT(α) = 0 with b = (1 − 2−(1−q))/[(1 − q) ln 2] into (14) by replacing αmin and αmax by
α− and α+, respectively, i.e.

1/(1 − q) = 1/α− − 1/α+ (26)

we obtain the third relation between X, q and α0, which can be solved as

√
2X =

[√
α2

0 + (1 − q)2 − (1 − q)

]/ √
b (27)

or

α0 =
√

2bX + 2(1 − q)
√

2bX. (28)

Once we know the value of the intermittency exponent µ, the above three equations (23), (24)
and (26) completely determine the three quantities X, q and α0.

For µ = 0.235 [8], we have q = 0.370, α0 = 1.14, X = 0.280 (case d in table 1).
Then, we obtain α+ − α0 = α0 − α− = 0.673, αmax − α0 = α0 − αmin = 1.133 and
q̄(α−) = −q̄(α+) = 3.72.

The scaling exponents ζm of velocity structure functions given by [8]

ζm = 1 − τ(m/3) = (m/3 − 1)Dm/3 + 1 (29)

† After finishing this letter, the authors were notified that a logarithmic term appears in the multifractal analysis
based on the generalized Cantor set proposed by Hosokawa [10]. Its interpretation in terms of the present statistical
mechanical approach, i.e. the distribution function, derived by taking the extremal of the generalized entropy, is one
of the attractive future problems.
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Figure 2. Scaling exponents ζm for the cases in table 1.
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Figure 3. The multifractal spectrum fT(α) based on Tsallis statistics, and fB(α) based on the
binomial multiplicative process (p-model), for the case µ = 0.235.

for the case µ = 0.235 are shown in figure 1 with experimental data [11, 12] and with the
curves given by other theories, i.e. K41 [7], log normal [13–15], β-model [16], p-model [5,8]
and log Poisson [17]. The asymptotic behaviour of ζm for m → ∞ has a log term appearing
in (21), i.e.

ζm → αminq̄ − δτ(m/3). (30)

The curve (29) given by the present analysis successfully explains experimental data. Note
that there is no fitting parameter.

The scaling exponent ζm for several values of µ listed in table 1 are shown in figure 2.
Comparing the curves with experimental data, we conjecture that the value of the intermittency
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exponent µ for the fully developed turbulence can be narrowed down to µ = 0.235 ± 0.015.
The multifractal spectrum fT(α) of the present approach and fB(α) of the p-model are

shown in figure 3 for µ = 0.235. Note that fT(α) < 0 for α > α+, α < α−.
The present analysis strongly indicates that the underlying statistics of fully developed

turbulence is that of the Tsallis ensemble. The existence of a log term in the asymptotic
expression of the scaling exponent (30) is one of the new features representing characteristics
of Tsallis statistics. Experimental verification of this feature is highly desirable. With the
proposed multifractal spectrum (16), we can investigate further the underlying dynamics
supporting Tsallis statistics. This may provide us with a further understanding of turbulence
in connection with the excess turbulent entropy which can be related to the pseudo-additivity
property (11). Incorporation of skewness into the present approach may be one attractive
future problem. We noticed that another [18] application to turbulence will be soon published
using Tsallis statistics. The approach is, however, somewhat different and will be the subject
of future comparison. These future problems will be reported elsewhere.

Let us close this letter by noting the case q → 1−. We obtain α0 = X = 2,
fT = −α(α− 4)/4 and τ(q̄) = (1 − q̄)2, giving µ = 2. Although the case q = 1 corresponds
to a Gaussian distribution, it is not the same as the log-normal model [8]. From the value of
µ, we can conclude that the case q = 1 for fully developed turbulence may not be realized in
nature.

The authors would like to thank Professor C Tsallis for his appropriate comments and
continuous encouragement, and Professor T Nakano, Professor T Goto and Professor S Kida
for their fruitful comments.
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